Foxo3a-mediated overexpression of microRNA-622 suppresses tumor metastasis by repressing hypoxia-inducible factor-1α in erk-responsive lung cancer
نویسندگان
چکیده
Metastatic spread of cancer cells portends a poor prognosis and mortality for lung cancer patients. Hypoxia-inducible factor-1α (HIF-1α) enhances tumor cell motility by activating the epithelial-to-mesenchymal transition (EMT), which is considered a prerequisite for metastasis. Recent studies of microRNA involvement in cancer invasion and metastasis have highlighted the role of such RNAs in tumor development. However, little work has been done to identify tumor suppressor microRNAs that target HIF-1α to down-modulate the EMT and thereby counteract the aggressiveness and metastasis of lung cancer cells. Here, we identified the 3'-untranslated region of HIF-1α mRNA as a target of miR-622 and established that miR-622-mediated down-modulation of HIF-1α correlates with decreased levels of mesenchymal proteins, including Snail, β-catenin, and vimentin. Functional analyses revealed that increased miR-622 expression inhibited lung cancer cell migration and invasion in vitro. miR-622 also inhibited the genesis of metastatic lung nodules as demonstrated in a lung cancer xenograft model in which nude mice were transplanted with A549 cells expressing miR-622. Mechanistic analyses showed that overexpression of EGF decreased the miR-622 level in A549 cells, and this reduction could be rescued by administrating U0126, an inhibitor of ERK. Moreover, miR-622 overexpression mediated by the transcription factor FOXO3a decreased the invasiveness of lung tumor cells by inhibiting HIF-1α via inactivation of ERK signaling in U0126-treated A549 cells. These findings highlight the pivotal role of the FOXO3a/miR-622 axis in inhibiting HIF-1α to interfere with tumor metastasis, and this information may contribute to development of novel therapeutic strategies for treating aggressive lung cancer.
منابع مشابه
Blockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model
Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...
متن کاملUCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1α
Hypoxia-inducible factor 1 (HIF-1) plays a role in tumour metastases; however, the genes that activate HIF-1 and subsequently promote metastases have yet to be identified. Here we show that Ubiquitin C-terminal hydrolase-L1 (UCHL1) abrogates the von Hippel-Lindau-mediated ubiquitination of HIF-1α, the regulatory subunit of HIF-1, and consequently promotes metastasis. The aberrant overexpression...
متن کاملMicroRNA-370 inhibits the growth and metastasis of lung cancer by down-regulating epidermal growth factor receptor expression
Abnormal microRNA-370 (miR-370) expression has been frequently reported in several types of cancers, including lung cancer. However, the role and molecular mechanisms of miR-370 in regulating the growth and metastasis of lung cancer have not been clarified. Here, we show higher levels of epidermal growth factor receptor (EGFR), but lower levels of miR-370 expression in most human lung cancer ce...
متن کاملDaxx inhibits hypoxia-induced lung cancer cell metastasis by suppressing the HIF-1α/HDAC1/Slug axis
Hypoxia is a major driving force of cancer invasion and metastasis. Here we show that death domain-associated protein (Daxx) acts to negatively regulate hypoxia-induced cell dissemination and invasion by inhibiting the HIF-1α/HDAC1/Slug pathway. Daxx directly binds to the DNA-binding domain of Slug, impeding histone deacetylase 1 (HDAC1) recruitment and antagonizing Slug E-box binding. This, in...
متن کاملMicroRNA-22 Regulates Hypoxia Signaling in Colon Cancer Cells
MicroRNAs (MiRNAs) are short, non-coding RNA that regulate a variety of cellular functions by suppressing target protein expression. We hypothesized that a set of microRNA regulate tumor responses to hypoxia by inhibiting components of the hypoxia signaling pathway. We found that miR-22 expression in human colon cancer is lower than in normal colon tissue. We also found that miR-22 controls hyp...
متن کامل